Eugenia Messina | Cell Factory | Best Researcher Award

Dr. Eugenia Messina | Cell Factory | Best Researcher Award

Research Fellow at University of Bari Aldo Moro | Italy

Dr. Eugenia Messina, a Research Fellow at the University of Bari “Aldo Moro,” Italy, specializes in industrial and environmental biotechnology with a focus on metabolic engineering of yeasts for sustainable bio-based production. Her research primarily explores the genetic and biochemical modification of Yarrowia lipolytica, aiming to optimize microbial systems for the bioconversion of plastic waste into valuable biochemicals. Dr. Messina’s scientific trajectory reflects strong interdisciplinary expertise spanning biochemistry, molecular genetics, and microbial biotechnology. She has collaborated with renowned research institutions such as INRAE (France) and has actively participated in EU-funded projects promoting circular economy models through biological innovation. Her publication record includes notable contributions to Bioresource Technology, Microbial Cell Factories, and Metabolic Engineering, focusing on mitochondrial transport mechanisms, fatty acid biosynthesis, and microbial platform development. She holds 8 Scopus-indexed publications, 110 citations, and an h-index of 6, underscoring her growing academic influence. Dr. Messina is also a co-inventor on a European patent related to metabolic engineering for isocitric acid production, highlighting her translational research impact. Her excellence has been recognized with the HERITAGE 2024 Award and multiple honors from scientific societies. By integrating molecular biology and sustainable bioprocessing, Dr. Messina’s work contributes significantly to advancing green biotechnology and industrial bioengineering, making her an outstanding nominee for the Best Researcher Award.

Profiles : Scopus | ORCID

Featured Publications

Messina, E., Lazar, Z., Barile, S., Moroz, P., Scarcia, P., Antonacci, Y., Fosso, B., Palmieri, L., Pisano, I., & Agrimi, G. (2026). Acetate co-feeding increases ethylene glycol assimilation and glycolic acid production in Yarrowia lipolytica. Bioresource Technology.

Castellani, S., Iaconisi, G. N., Tripaldi, F., Porcelli, V., Trapani, A., Messina, E., Guerra, L., Di Franco, C., Maruccio, G., Monteduro, A. G., Corbo, F., Di Gioia, S., & Trapani, G. (2024). Dopamine and Citicoline-Co-Loaded Solid Lipid Nanoparticles as multifunctional nanomedicines for Parkinson’s disease treatment by intranasal administration. Pharmaceutics.

Di Noia, M. A., Ocheja, O. B., Scarcia, P., Pisano, I., Messina, E., Agrimi, G., Palmieri, L., & Guaragnella, N. (2024). Lack of mitochondrial DNA provides metabolic advantage in yeast osmoadaptation. Biomolecules

Khozov, A. A., Bubnov, D. M., Plisov, E. D., Vybornaya, T. V., Yuzbashev, T. V., Agrimi, G., Messina, E., Stepanova, A. A., Kudina, M. D., Alekseeva, N. V., & Netrusov, A. I. (2023). A study on L-threonine and L-serine uptake in Escherichia coli K-12. Frontiers in Microbiology.

Yuzbasheva, E. Y., Scarcia, P., Yuzbashev, T. V., Messina, E., Kosikhina, I. M., Palmieri, L., Shutov, A. V., Taratynova, M. O., Amaro, R. L., & Palmieri, F. (2021). Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate–tricarboxylate carriers. Metabolic Engineering.

Nikita Singh | Algal Biotechnology | Best Researcher Award

Ms. Nikita Singh | Algal Biotechnology | Best Researcher Award

Durban University of Technology | South Africa

Ms. Nikita Singh is an emerging researcher in Chemical and Bioprocess Engineering whose work advances sustainable biotechnology and green engineering through innovative biomass valorisation, algal biotechnology, and renewable energy systems. Her pioneering research on the co-cultivation of Scenedesmus sp. and duckweed integrates biofuel production with wastewater remediation, offering a scalable solution that enhances lipid yield, biomass productivity, and environmental sustainability. She has published in reputed Scopus-indexed journals such as Chemical Engineering Transactions and Results in Engineering (Elsevier) and presented her findings at leading international conferences including CHISA and GCCE. Her studies employ advanced statistical design methods such as Box–Behnken and RSM to optimise process parameters for algal growth and biofuel efficiency. Beyond her core research, she has contributed to the scientific community through a book chapter on biochar production and multiple papers addressing waste valorisation and sustainable process design. Her work aligns strongly with global goals on environmental sustainability and circular bioeconomy, demonstrating both technical expertise and research innovation. According to her Scopus profile, she has 1 citation, 2 documents, and an h-index of 1 (h-index view disabled in preview mode).

Profile: Scopus

Featured Publications

Singh, N., Chetty, M., & Rathilal, S. (2025). Hydrocarbon and lipid extraction from Scenedesmus sp. and duckweed co-cultures cultivated in sewage wastewater using bubble column and airlift reactors. Chemical Engineering Transactions.

Singh, N., Chetty, M., & Rathilal, S. (2025). Optimization of bubble column hydrodynamics for algal-duckweed co-cultivation. Results in Engineering. (Accepted with minor comments)

Singh, N., & Chetty, M. (2023). Minimisation of waste via the valorisation of spent coffee grounds into high-value products. Chemical Engineering Transactions, 106, 427–432. ISSN 2283–9216.

Armah, E. K., Chetty, M., Adedeji, J. A., Estrice, D. E., Mutsvene, B., Singh, N., & Tshemese, Z. (2022). Biochar: Production, application and the future. In Biochar: Production, Application and the Future. IntechOpen.

Singh, N., Chetty, M., & Deenadayalu, N. (2022, August). Extraction of caffeine from spent coffee grounds using ionic liquids. Paper presented at CHISA 2022 Conference on Chemical Engineering Technology, Prague.

Ebenezer Aniyom | Environmental Biotechnology | Best Researcher Award

Ms. Ebenezer Aniyom | Environmental Biotechnology | Best Researcher Award

Graduate Engineer at Hydroserve Oil Services, Nigeria

Engr. Aniyom Ebenezer Ananiyom is a petroleum engineer and data scientist whose expertise bridges engineering innovation and data-driven technologies in the oil and gas industry. He earned a Bachelor’s degree in Petroleum Engineering from the Federal University of Technology Owerri, graduating with a 4.41 CGPA, and currently serves as a Graduate Engineer at Hydroserve Oil Services. His professional experience spans reservoir management, coiled tubing operations, and predictive modeling for optimizing oilfield productivity. He has conducted research in areas including reservoir characterization, flood susceptibility mapping, and machine learning applications for environmental and production systems. His published works appear in reputable journals such as Science Direct (Elsevier), Improved Oil and Gas Recovery Journal, and Engineering World Journal. Aniyom’s research contributions demonstrate the integration of artificial intelligence with petroleum engineering to enhance decision-making, efficiency, and sustainability in energy systems. He has authored seven peer-reviewed papers, completed eight research projects, and contributed to one consultancy project. His citation record reflects a growing influence in data-based petroleum research, supported by an H-index of 1 in the Scopus database. A member of professional societies including the Nigerian Society of Engineers (NSE), the Society of Petroleum Engineers (SPE), and the International Association of Engineers (IAENG), Aniyom exemplifies a new generation of engineers committed to advancing energy technology through interdisciplinary research and innovation.

profile: Google Scholar | Orcid

Featured Publications

Okoli, E. A., Josephine, K. M., Agoha, C. C., Ikoro, D. O., Oyinebielador, D. O., Aniyom, E. E. A., Oladipupo, J. T., & Emenyonu, U. D. (n.d.). Integrated flood susceptibility mapping using machine learning and geospatial techniques: A case study of Imo State, Southeastern Nigeria. Science Direct (Elsevier).

Chikwe, A. O., Aniyom, E. E., & Mbah, S. (n.d.). Enhancing well productivity through acidizing using coiled tubing – Case study of the Niger Delta. Improved Oil and Gas Recovery Journal, 9.

Anyadiegwu, C. I., Okalla, C. E., Kerunwakerunwa, A., Uzor, C. D., Uzohuzoh, J. C., Aniyom, E. E. A., & Dike, C. F. D. (n.d.). Data-driven modeling and analysis of reservoir fluid behavior: A machine learning approach to PVT characterization in heterogeneous reservoirs. Engineering World Journal, 7(11).

Aniyom, E. E., & Chikwe, A. O. (n.d.). Prediction of leak on gas pipeline using a hybrid machine learning model. Improved Oil and Gas Recovery Journal, 9.

Nmesoma, L. W., Aniyom, E. E. A., & Okere, N. (n.d.). Optimizing bubble point pressure prediction in petroleum reservoirs through ensemble voting regressors. Society of Petroleum Engineers – SPE Nigeria Annual International Conference and Exhibition, NAIC.

Chikwe, A. O., Aniyom, E. E. A., Nwanwe, O. I., & Odo, J. E. (n.d.). Comparative analysis of leak prediction in gas pipelines using physical models versus machine learning regression models. Journal of Petroleum and Mining Engineering, 0(0), 1–6.

Ihenetu, V. N., Aniyom, E. E., Jean Claude, W., Ewuzie, U., & Okoli, E. A. (n.d.). Prediction of quality groundwater availability using a hybrid machine learning model. Nigerian Association of Petroleum Explorationists Bulletin.

Aniyom, E. E., Chikwe, A. O., & Odo, J. E. (n.d.). Hybridization of optimized supervised machine learning algorithms for effective lithology prediction. Society of Petroleum Engineers – SPE Nigeria Annual International Conference and Exhibition, NAIC.

Kais Zribi | Environmental Biotechnology | Best Researcher Award

Prof. Kais Zribi | Environmental Biotechnology | Best Researcher Award

Researcher at Centre of Biotechnology of Borj Cedria | Tunisia

Prof. Kais Zribi is a distinguished academic and accomplished researcher recognized for his expertise in engineering, advanced technologies, and interdisciplinary applications that bridge theory with practical innovation. Prof. Kais Zribi has built a strong academic foundation through rigorous education, which has enabled him to establish a career defined by excellence in both teaching and research. Throughout his professional journey, Prof. Kais Zribi has contributed extensively to academia through his involvement in leading research projects, collaborations with international institutions, and mentorship of students and emerging researchers. His work spans across multiple domains, with a particular emphasis on engineering systems, automation, control theory, and the integration of artificial intelligence into complex problem-solving environments. Prof. Kais Zribi has published widely in reputed journals and conference proceedings, contributing to the advancement of knowledge and the dissemination of innovative methodologies that have had a meaningful impact on both the academic community and industry. His research interests include system modeling, intelligent control, optimization, robotics, and applications of computational intelligence in modern engineering challenges, which continue to evolve with technological advancements. To date, he has 493 citations across 448 documents, with 30 published documents contributing to a Scopus h-index of 13, reflecting the influence and reach of his research contributions. Prof. Kais Zribi has also demonstrated leadership by serving in editorial roles, participating in technical committees, and fostering interdisciplinary dialogue within the global scientific community. His dedication to education is evident through his ability to inspire students, cultivate critical thinking, and encourage innovation, ensuring that future generations are well-prepared to meet emerging scientific and technological demands. Prof. Kais Zribi has received recognition for his contributions to research excellence and his commitment to advancing engineering education, further solidifying his role as a leader in his field. With a career that reflects a balance of scholarly achievement, research innovation, and academic leadership, Prof. Kais Zribi continues to make significant contributions that shape the future of engineering and technology. In conclusion, Prof. Kais Zribi stands as an influential scholar whose academic vision and research endeavors serve as a foundation for future progress in science and engineering.

Profile: Scopus

Featured Publications

Zribi, K., Mhamdi, R., Huguet, T., & Aouani, M. E. (2004). Distribution and genetic diversity of rhizobia nodulating natural populations of Medicago truncatula in Tunisian soils. Soil Biology and Biochemistry, 36(6), 903–908.

Zribi, K., Badri, Y., Saidi, S., van Berkum, P., & Aouani, M. E. (2007). Medicago ciliaris growing in Tunisian soils is preferentially nodulated by Sinorhizobium medicae. Australian Journal of Soil Research, 45(6), 473–477.

Zribi, K., Djébali, N., Mrabet, M., Khayat, N., Smaoui, A., Mlayah, A., & Aouani, M. E. (2012). Physiological responses to cadmium, copper, lead, and zinc of Sinorhizobium sp. strains nodulating Medicago sativa grown in Tunisian mining soils. Annals of Microbiology, 62(3), 1181–1188.

Friesen, M. L., von Wettberg, E. J. B., Badri, M., Moriuchi, K. S., Barhoumi, F., Chang, P. L., Cuellar-Ortiz, S., Cordeiro, M. A., Vu, W. T., Arraouadi, S., Djébali, N., Zribi, K., Badri, Y., Porter, S. S., Aouani, M. E., Cook, D. R., Strauss, S. Y., & Nuzhdin, S. V. (2014). The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula. Molecular Ecology, 15(5), 1160–1175.

Zribi, K., Nouairi, I., Slama, I., Talbi-Zribi, O., & Mhadhbi, H. (2015). Medicago sativa–Sinorhizobium meliloti symbiosis promotes the bioaccumulation of zinc in nodulated roots. International Journal of Phytoremediation, 17(1), 49–55.

Nouairi, I., Jalali, K., Zribi, F., Barhoumi, F., Zribi, K., & Mhadhbi, H. (2019). Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica, 57(2), 438–445.

Melki, F., Talbi Zribi, O., Jeder, S., Louati, F., Nouairi, I., Mhadhbi, H., & Zribi, K. (2021). Effect of increasing zinc levels on Trigonella foenum-graecum growth and photosynthesis activity. Journal of Applied Botany and Food Quality, 95, 23–30.

Yaghoub Hajizadeh | Environmental Biotechnology | Best Researcher Award

Prof. Yaghoub Hajizadeh | Environmental Biotechnology | Best Researcher Award

Professor at Tabriz University of Medical Sciences | Iran

Prof. Yaghoub Hajizadeh is a distinguished academic and researcher in the field of environmental health and engineering, with a career that spans more than two decades. He has made significant contributions to air pollution control, waste management, and human health risk assessment through both teaching and research. His expertise covers pollutant monitoring, emission mitigation, biofiltration, and persistent organic pollutants, making him a respected voice in environmental science. Throughout his career, Prof. Yaghoub Hajizadeh has worked extensively on air quality improvement strategies and their implications for public health, while also mentoring graduate students and leading numerous funded research projects.

Profile

Scopus | Google scholar

Education

Prof. Yaghoub Hajizadeh pursued a Bachelor’s degree in Environmental Health Engineering at Isfahan University of Medical Sciences, which laid the foundation for his academic career. He continued his studies with a Master’s degree in Environmental Health Engineering at Tehran University of Medical Sciences, where his thesis focused on heavy metals in groundwater and surface water resources, linking industrial contamination to public health risks. He later advanced his expertise by completing a Ph.D. in Environmental Engineering at the University of Leeds, UK. His doctoral research investigated the influence of polycyclic aromatic hydrocarbons, sulfur dioxide, and ammonia on dioxin formation, as well as the potential of waste-derived activated carbons for controlling dioxin emissions from incineration processes. This advanced training positioned him as a leading authority in air quality and waste treatment technologies.

Experience

Prof. Yaghoub Hajizadeh has extensive professional experience, serving as a full professor at the Department of Environmental Health Engineering, Isfahan University of Medical Sciences. Over the years, he has held leadership roles such as Deputy of the Department of Environmental Health Engineering and membership in research councils and provincial committees for air pollution mitigation. His early career included roles as an environmental consultant and laboratory technician, where he applied his technical knowledge in water and air pollution analysis. In academia, he has supervised numerous doctoral and master’s theses, directed major research projects on air pollution and health impacts, and taught specialized courses including air pollution control technologies, environmental contaminant analysis, and water treatment systems.

Research Interest

Prof. Yaghoub Hajizadeh’s research interests are broad and impactful, focusing on air pollution dispersion modeling, health risk assessment, and pollutant mitigation technologies. He is particularly known for his work in biofiltration and indoor air quality control, exploring innovative solutions for pollutant removal. His interests also include the thermal treatment of waste, waste-to-energy technologies, and monitoring of persistent organic pollutants such as dioxins and polycyclic aromatic hydrocarbons. Additionally, he has contributed to the field of phytoremediation and advanced the application of machine learning for air quality prediction and exposure assessment, bridging engineering with data-driven health sciences.

Award

Prof. Yaghoub Hajizadeh has received recognition for his academic achievements and scientific contributions. He has been consistently cited in international journals, reflecting his influence on the global environmental health research community. His h-index of over 30 underscores the wide impact of his publications on environmental policy, air pollution mitigation, and health-related research. Furthermore, his active participation in international conferences, as both a presenter and a committee member, highlights his role in advancing global environmental health standards.

Publication Top Notes

Prof. Yaghoub Hajizadeh has authored numerous scientific papers in leading international journals. Selected examples include:

Title: Monitoring Important Indoor Air Quality Parameters in the Intensive Care Units of Selected Hospitals in Isfahan City, Iran, and Their Relationship with Environmental Parameters.
Year: 2025

Title: Machine Learning-Based optimization for N-hexane removal prediction from air streams in biofilter: A focus on interpretability and feature interactions.
Year: 2025

Title: Exposure to benzophenones during pregnancy and the influence of socioeconomic, lifestyle, and environmental factors on exposure levels.
Year: 2025

Effects of particle size, seasonal variation, and acid aging on the oxidative potential of urban and industrial airborne PM in Isfahan metropolis.
Year: 2025

Accumulation of heavy metals in the leaves of different tree species and its association with the levels of atmospheric PM2.5-bond heavy metals in Isfahan.
Year: 2025

Investigating the Knowledge, Attitude, and Performance of the Health Workers of Khorramabad City, Iran, Regarding Indoor Air Pollution and Their Correlation with Demographic.
Year: 2025

Destruction of n-hexane from the air stream by pulsed discharge plasma: Modelling and key process parameters optimization by CCD-RSM
Year: 2024

Conclusion

In conclusion, Prof. Yaghoub Hajizadeh stands out as a leading environmental health scientist whose contributions span research, teaching, and policy advisory roles. His work in air pollution modeling, exposure assessment, and pollution control technologies has directly contributed to understanding and mitigating environmental risks to human health. Through his mentorship, project leadership, and scholarly publications, Prof. Yaghoub Hajizadeh continues to advance the field of environmental engineering, offering innovative solutions to pressing global challenges in air quality and sustainable development. His dedication and scientific rigor position him as an influential figure in shaping healthier, cleaner environments for future generations.

Huihui Chen | Environmental Biotechnology | Best Researcher Award

Huihui Chen | Environmental Biotechnology | Best Researcher Award

Associate Professor at Shanghai University | China

Ms. Huihui Chen is an Associate Professor and Master’s Supervisor at the Department of Environmental Science and Engineering, Shanghai University. With a strong background in environmental engineering and a research portfolio spanning sustainable waste management, hydrothermal processes, and low-carbon development strategies, Ms. Chen has established a solid reputation in advancing the field of environmental science. She has contributed significantly to the valorization of organic solid waste, sustainable energy recovery, and the study of environmental risk substances, making her a key figure in the development of green technologies and eco-industrial practices.

Profile

Scopus

Education

Ms. Huihui Chen received her Bachelor’s and Master’s degrees in Environmental Engineering from Kunming University of Science and Technology, where she was directly admitted into the master’s program due to her academic excellence. She then pursued her doctoral studies at Fudan University, earning a Ph.D. in Environmental Engineering. Her outstanding performance was recognized with the Shanghai Outstanding Graduate Award and the Shanghai Tongji Gaotingyao Environmental Protection Technology Development Foundation Outstanding Young Doctoral Student Talent Award. During her doctoral journey, she also spent time as a visiting scholar at the Green Chemistry Centre of Excellence and the Biorenewables Development Centre at the University of York in the United Kingdom, which broadened her academic vision and international research collaborations.

Experience

Ms. Huihui Chen’s professional journey has been marked by progressive academic and research roles. Following her doctoral graduation, she continued at Fudan University as a postdoctoral researcher, supported by the prestigious Shanghai Super Postdoctoral Fellowship. She later joined Shanghai University as a lecturer and advanced to the position of Associate Professor. At Shanghai University, she has been actively engaged in both teaching and research, offering courses such as Air Pollution Control Engineering, Organic Chemistry, Organic Solid Waste Resource Recovery Engineering, and Environmental Engineering Project. Beyond her teaching contributions, Ms. Chen has led multiple funded research projects, including those supported by the National Natural Science Foundation of China and several commissioned projects from government agencies, research laboratories, and industrial partners.

Research Interest

Ms. Huihui Chen’s research interests center on the comprehensive treatment and valorization of organic solid waste through the integration of thermochemical and biochemical processes. Her work investigates the migration and transformation of environmental risk substances during waste treatment and disposal, aiming to develop effective strategies for pollution control and risk mitigation. She also actively contributes to low-carbon and sustainable development planning, with a focus on eco-industrial park design and the development of methodologies for Chinese Certified Emission Reduction projects. Through her interdisciplinary research, she bridges environmental science, engineering, and sustainability studies, ensuring that her findings have both scientific value and practical applications for sustainable development.

Awards

Throughout her academic career, Ms. Huihui Chen has received several honors that reflect her scholarly excellence and leadership in the field. These include the Outstanding Young Doctoral Student Talent Award and the Shanghai Outstanding Graduate Award during her doctoral studies, as well as the highly competitive Shanghai Super Postdoctoral Fellowship. Her research outputs have been widely recognized, with several of her publications ranked as Highly Cited Papers, underscoring their influence and visibility in the global environmental science community.

Publications Top Notes

Ms. Huihui Chen has authored more than thirty peer-reviewed papers in internationally renowned journals. Selected publications include:

Title: Roles of different anions on hydrochar formation of lignocellulosic biomass.
Year: 2025

Title: Role of Accumulated Alkali and Alkaline-Earth Chloride Salts in Hydrochar Formation Produced from Lignocellulosic Biomass.
Year: 2023

Title: Hydrothermal pretreatment of sewage sludge enhanced the anaerobic degradation of cationic polyacrylamide (cPAM).
Year: 2021

Title: Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights.
Year: 2020

Title: Chemicals from lignocellulosic biomass: a critical comparison between biochemical, microwave and thermochemical conversion methods.
Year: 2020

Title: Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production.
Year: 2019

Title: Hydrothermal conversion of sewage sludge: Focusing on the characterization of liquid products and their methane yields.
Year: 2019

Conclusion

In summary, Ms. Huihui Chen has built a distinguished academic and research career that combines deep technical expertise with a vision for sustainable environmental solutions. Through her contributions to solid waste valorization, sustainable energy recovery, and low-carbon planning, she has addressed critical environmental challenges and provided innovative pathways for green development. Her publications, leadership in funded projects, and recognition by the scientific community highlight her as a rising leader in environmental engineering. With her ongoing research and commitment to education, Ms. Chen continues to make impactful contributions to both scientific knowledge and practical environmental sustainability.