Eugenia Messina | Cell Factory | Best Researcher Award

Dr. Eugenia Messina | Cell Factory | Best Researcher Award

Research Fellow at University of Bari Aldo Moro | Italy

Dr. Eugenia Messina, a Research Fellow at the University of Bari “Aldo Moro,” Italy, specializes in industrial and environmental biotechnology with a focus on metabolic engineering of yeasts for sustainable bio-based production. Her research primarily explores the genetic and biochemical modification of Yarrowia lipolytica, aiming to optimize microbial systems for the bioconversion of plastic waste into valuable biochemicals. Dr. Messina’s scientific trajectory reflects strong interdisciplinary expertise spanning biochemistry, molecular genetics, and microbial biotechnology. She has collaborated with renowned research institutions such as INRAE (France) and has actively participated in EU-funded projects promoting circular economy models through biological innovation. Her publication record includes notable contributions to Bioresource Technology, Microbial Cell Factories, and Metabolic Engineering, focusing on mitochondrial transport mechanisms, fatty acid biosynthesis, and microbial platform development. She holds 8 Scopus-indexed publications, 110 citations, and an h-index of 6, underscoring her growing academic influence. Dr. Messina is also a co-inventor on a European patent related to metabolic engineering for isocitric acid production, highlighting her translational research impact. Her excellence has been recognized with the HERITAGE 2024 Award and multiple honors from scientific societies. By integrating molecular biology and sustainable bioprocessing, Dr. Messina’s work contributes significantly to advancing green biotechnology and industrial bioengineering, making her an outstanding nominee for the Best Researcher Award.

Profiles : Scopus | ORCID

Featured Publications

Messina, E., Lazar, Z., Barile, S., Moroz, P., Scarcia, P., Antonacci, Y., Fosso, B., Palmieri, L., Pisano, I., & Agrimi, G. (2026). Acetate co-feeding increases ethylene glycol assimilation and glycolic acid production in Yarrowia lipolytica. Bioresource Technology.

Castellani, S., Iaconisi, G. N., Tripaldi, F., Porcelli, V., Trapani, A., Messina, E., Guerra, L., Di Franco, C., Maruccio, G., Monteduro, A. G., Corbo, F., Di Gioia, S., & Trapani, G. (2024). Dopamine and Citicoline-Co-Loaded Solid Lipid Nanoparticles as multifunctional nanomedicines for Parkinson’s disease treatment by intranasal administration. Pharmaceutics.

Di Noia, M. A., Ocheja, O. B., Scarcia, P., Pisano, I., Messina, E., Agrimi, G., Palmieri, L., & Guaragnella, N. (2024). Lack of mitochondrial DNA provides metabolic advantage in yeast osmoadaptation. Biomolecules

Khozov, A. A., Bubnov, D. M., Plisov, E. D., Vybornaya, T. V., Yuzbashev, T. V., Agrimi, G., Messina, E., Stepanova, A. A., Kudina, M. D., Alekseeva, N. V., & Netrusov, A. I. (2023). A study on L-threonine and L-serine uptake in Escherichia coli K-12. Frontiers in Microbiology.

Yuzbasheva, E. Y., Scarcia, P., Yuzbashev, T. V., Messina, E., Kosikhina, I. M., Palmieri, L., Shutov, A. V., Taratynova, M. O., Amaro, R. L., & Palmieri, F. (2021). Engineering Yarrowia lipolytica for the selective and high-level production of isocitric acid through manipulation of mitochondrial dicarboxylate–tricarboxylate carriers. Metabolic Engineering.

Satyajit Ghosh | Neuro Biotechnology | Best Researcher Award

Dr. Satyajit Ghosh | Neuro Biotechnology | Best Researcher Award

Research Associate at IIT Jodhpur | india

Dr. Satyajit Ghosh, Ph.D. in Bioscience and Bioengineering from the Indian Institute of Technology Jodhpur, is a researcher specializing in neurobiology, extracellular vesicles (EVs), and regenerative medicine. His work focuses on the development of peptide-engineered EVs for targeted neural stem cell delivery, microfluidic neuro-glial co-culture systems, and the mechanistic exploration of EV-mediated neural repair. He integrates advanced molecular and computational tools such as LC-MS/MS proteomics, electrophysiology, and molecular docking to uncover novel neurotherapeutic strategies. Dr. Ghosh has contributed significantly to high-impact journals including ACS Chemical Neuroscience, ACS Applied Materials & Interfaces, Journal of Medicinal Chemistry, and Frontiers in Pharmacology, with 29 publications, 232 citations, and an h-index of 9 in his Scopus profile. His research has led to several patents on peptide-functionalized exosomes, neuroprotective hydrogels, and small molecule neuromodulators, highlighting his translational approach to neuroregeneration. Recognized through awards and fellowships from SERB-India and ISEV, his ongoing work at IIT Jodhpur emphasizes the interface of bioengineering, nanotechnology, and neuroscience for developing next-generation therapeutic interventions in neurodegenerative diseases.

Profile: Scopus | Orcid | Google Scholar

Featured Publications

Ghosh, S., Ghosh, S., Jana, A., Roy, R., & Ghosh, S. (2025). Comprehensive account of exosome isolation from rat substantia nigra for mass spectrometry-based proteomics study. Methods, 241, 150–162.

Ghosh, S., Roy, R., Mukherjee, N., Ghosh, S., Jash, M., Jana, A., & Ghosh, S. (2024). EphA4 targeting peptide-conjugated extracellular vesicles rejuvenate adult neural stem cells and exert therapeutic benefits in aging rats. ACS Chemical Neuroscience, 15(19), 3482–3495.

Ghosh, S., & Ghosh, S. (2022). Extracellular vesicles as disease biomarkers and neurotherapeutics. Frontiers in Pharmacology, 13, 878058.

Jash, M., Ghosh, S., Nandi, S., Adak, A., Roy, R., Bera, A., & Ghosh, S. (2025). Crafting precision: Design and fabrication of a xurography-driven microfluidic platform for exploring neuron culture and targeted drug screening. ACS Chemical Neuroscience.

Nandi, S., Ghosh, S., Garg, S., & Ghosh, S. (2024). Unveiling the human brain on a chip: An odyssey to reconstitute neuronal ensembles and explore plausible applications in neuroscience. ACS Chemical Neuroscience, 15(21), 3828–3847.

Ifza Shad | Industrial Biotechnology | Best Researcher Award

Ms. Ifza Shad | Industrial Biotechnology | Best Researcher Award

PhD at University of Science and Technology of China | China

Ms. Ifza Shad is an emerging AI researcher specializing in computer vision, deep learning, and real-time object detection, with strong contributions to medical image analysis and intelligent automation. She completed her MS in Computer Science at Central South University, China, focusing on the development of real-time litter detection models for surface and aquatic environments, and previously earned a BS (Hons) in Computer Science from the University of Central Punjab, Pakistan, graduating as a gold medalist. Her professional experience includes serving as a Computer Vision Engineer at ITSOLERA Pvt, where she led research in medical image analysis for fracture detection and visual search systems for precision agriculture, and as a Data Analyst at Motive, USA, where she excelled in data annotation and analytics. Ifza has authored multiple research papers, including Deep Learning-Based Image Processing Framework for Efficient Surface Litter Detection (Journal of Radiation Research and Applied Sciences, 2025), Attention-Driven Sequential Feature Fusion Framework for Effective Brain Tumor Diagnosis (Significances of Bioengineering and Biosciences, 2025), and An Attention-Fused Architecture for Brain Tumor Diagnosis (Biomedical Signal Processing and Control, 2024). Her ongoing projects explore lightweight YOLO architectures for aquatic litter detection and driver distraction monitoring. With a growing Scopus profile demonstrating increasing academic visibility through 5 publications, citations, and an evolving h-index, she continues to advance AI-driven solutions that integrate sustainability, healthcare, and safety.

Profile: ORCID

Featured Publications

Shad, I. (2025). Deep learning-based image processing framework for efficient surface litter detection in computer vision applications. Journal of Radiation Research and Applied Sciences.

Shad, I. (2025). Attention-driven sequential feature fusion framework for effective brain tumor diagnosis. Significances of Bioengineering and Biosciences.

Shad, I., & Co-authors. (2024). An attention-fused architecture for brain tumor diagnosis. Biomedical Signal Processing and Control.

Shad, I. (2025). ALD-Yolov9c: Lightweight architecture for aquatic litter detection in dynamic environments. IEEE. (Submitted).

Shad, I. (2024). Overcoming misinformation: Advanced detection of fake news by integration of K-fold stacked ensemble. International Journal of Software Engineering and Knowledge Engineering (IJSEKE). (Under review).

Binod Panthi | Agricultural Biotechnology | Biotechnology Advancement Award

Mr. Binod Panthi | Agricultural Biotechnology | Biotechnology Advancement Award

Graduate Student at Tribuvan University | Nepal

Mr. Binod Panthi is a dedicated agricultural researcher whose academic and professional journey reflects a deep commitment to advancing crop science and sustainable farming practices. With expertise in agronomy, plant breeding, and genetics, he has focused his work on the development of climate-resilient crops, particularly wheat, while also promoting the conservation and improvement of local landraces. His research combines modern scientific approaches with the preservation of biodiversity, aiming to enhance productivity and food security in vulnerable farming communities. Through scholarly contributions and active participation in research projects, he has established himself as a promising young scientist in agricultural sciences.

Profile

Orcid | Google Scholar

Education

Mr. Binod Panthi earned his Bachelor of Science in Agriculture from the Institute of Agriculture and Animal Science, Tribhuvan University. During his studies, he specialized in agronomy, plant breeding, and genetics, gaining a comprehensive understanding of crop production, soil science, horticulture, and agricultural economics. His undergraduate thesis focused on the performance and stability of elite wheat genotypes under abiotic stress conditions, providing him with practical expertise in evaluating genetic potential and environmental adaptability. This academic background has equipped him with the analytical skills and technical knowledge needed to pursue advanced research in crop improvement and sustainable agriculture.

Experience

Mr. Binod Panthi has gained valuable research and professional experiences that demonstrate his versatility and dedication. He has actively participated in projects involving the evaluation of wheat genotypes for resistance against diseases and tolerance to abiotic stress factors such as drought and heat. His roles included designing field layouts, implementing agronomic practices, conducting data collection, and preparing manuscripts. He has also contributed to studies beyond crop breeding, including surveys on fish feed markets and problem identification in rural schools, where he played a leadership role in data analysis and reporting. In addition, he has been involved in biodiversity fairs, climate-smart agriculture workshops, integrated nutrient management programs, and pest management training for farmers. These experiences highlight his ability to bridge academic research with practical applications that benefit both science and rural communities.

Research Interest

Mr. Binod Panthi’s research interests are centered on crop breeding and genetic improvement with a particular focus on developing high-yielding and stress-tolerant crops. He is passionate about advancing plant breeding strategies that enhance the resilience of crops to both biotic and abiotic stress factors while conserving the genetic diversity of neglected and underutilized species. His work emphasizes trait-based selection, genotype by environment interactions, and climate-resilient breeding approaches that directly contribute to global food security. By focusing on both staple crops like wheat and local landraces, his research creates opportunities to combine scientific innovation with the preservation of agricultural biodiversity.

Awards

Mr. Binod Panthi has received recognition through scholarships and research grants that reflect his academic excellence and research potential. He was awarded a full undergraduate scholarship by Tribhuvan University, an achievement that highlights his outstanding merit. He has also been supported by competitive research grants for his thesis and for community-based projects, including rural school assessments and agricultural market surveys. His ability to secure academic and research funding demonstrates his potential to contribute meaningfully to agricultural science and rural development initiatives.

Publications Top Notes

Title: Drought stress effect, tolerance, and management in wheat–a review.
Year: 2024
Citations: 72

Title: Identification of drought tolerant wheat (Triticum aestivum) genotypes using stress tolerance indices in the western terai region of Nepal.
Year: 2023
Citations: 08

Title: Agromorphological analysis of wheat (Triticum aestivum L.) genotypes under combined heat and drought stress conditions.
Year: 2023
Citations: 07

Title: Drought stress effect, tolerance, and management in wheat–a review. Cogent Food & Agriculture.
Year: 2024
Citations: 05

Title: Yield performance and stress tolerance indices of wheat genotypes under irrigated and rainfed condition.
Year: 2023
Citations:05

Title:Response of wheat to different abiotic stress conditions: A review.
Year: 2023
Citations: 04

Title: Present Status, Importance and Challenges of Neglected and Underutilized Crops Species (NUCS) in Nepal.
Year: 2021
Citations: 04

Conclusion

In conclusion, Mr. Binod Panthi is an emerging scholar in agricultural sciences who has already demonstrated significant academic, research, and professional achievements. His work in crop improvement, plant breeding, and biodiversity conservation reflects his dedication to solving challenges in sustainable food production and climate resilience. His contributions through research projects, publications, and community engagement show his ability to balance scientific rigor with practical impact. With a strong foundation in agriculture, a record of impactful publications, and recognition through awards and grants, he continues to establish himself as a promising researcher whose work will contribute to food security, biodiversity conservation, and sustainable agricultural development.